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Based on the extended Blonder-Tinkham-Klapwijk formalism, the tunneling conductance characteristics of
a planar junction between a ferromagnet and a noncentrosymmetric superconductor are studied. The effects of
the Rashba spin-orbit coupling �RSOC�, the exchange energy, and the Fermi wave-vector mismatch �FWM� on
the conductance are all taken into account. In the absence of the FWM, it is found that far away from the gap
edge the conductance is suppressed by the RSOC while around the gap edge it is almost independent of RSOC.
The interplay of the RSOC and the exchange energy causes an enhancement of the subgap conductance, which
is more pronounced when the RSOC is small. When the FWM is introduced, it is shown that the conductance
is monotonically enhanced as the FWM parameter decreases.

DOI: 10.1103/PhysRevB.80.014516 PACS number�s�: 74.50.�r, 74.45.�c

I. INTRODUCTION

In recent years, tunneling spectroscopy has played a cru-
cial role in probing electronic states of superconductors
�SCs�. In normal-metal/superconductor junctions, zero-bias
conductance peaks1–3 observed in high-temperature super-
conductors are explained as arising from the sign change in
the pair potential, which leads to the formation of midgap
surface states. Replacing the normal metal by a ferromag-
netic metal, the conductance spectrum is considerably
changed due to the spin polarization caused by the exchange
field. Earlier works4–8 have demonstrated that the effect of
the exchange energy is, in general, to reduce the Andreev
reflection �AR� at a ferromagnet/centrosymmetric supercon-
ductor �FM/CSC� interface. So far, a variety of physical phe-
nomena, including the effects of temperature,9 the planar
magnetization components,10 and the Fermi wave-vector
mismatch �FWM� �Refs. 11 and 12� on the tunneling conduc-
tance and the proximity effect,13,14 has been investigated. In
particular, in Refs. 11 and 12 the effect of the FWM was
considered and it was found that in some cases the exchange
energy can enhance Andreev reflection. We would also like
to mention Ref. 15, where the tunneling conductance was
calculated for an FM/CSC junction in which the FM and SC
sides are separated by a two-dimensional electron gas with
the Rashba spin-orbit coupling �RSOC�.

The recent discovery of superconductivity in the heavy
fermion compound CePt3Si �Ref. 16� has renewed interest,
both experimental and theoretical, in the properties of super-
conductors without inversion symmetry. Noncentrosymmet-
ric superconductors �NCSCs� exhibit a variety of distinctive
features, which is absent in the centrosymmetric case, such
as a strongly anisotropic spin susceptibility with a large re-
sidual component,17–19 magnetoelectric effect,20,21 and un-
usual nonuniform �“helical”� superconducting phases.22–24

The tunneling conductance in a normal-metal/
noncentrosymmetric superconductor �N/NCSC� junction has
been recently studied in Refs. 25–27. In these works,
Yokoyama et al.25 found that an intrinsically s-wave-like
property of a triplet NCSC results in a peak at the energy gap
in the tunneling spectrum. Iniotakis et al.26 observed the
zero-bias anomalies if a specific form of the mixed singlet-

triplet order parameter was realized. Linder and Sudbø27

found pronounced peaks and bumps in the conductance spec-
trum corresponding to the sum and difference of the magni-
tudes of the singlet and triplet gaps. One of the important
questions is how the Andreev reflection affects the tunneling
conductance in the presence of both ferromagnetism and
RSOC. So far, there has been no theory for this phenomenon.

The purpose of this paper is to investigate the tunneling
spectroscopy of a ferromagnet/noncentrosymmetric super-
conductor �FM/NCSC� junction. We employ the well-known
Blonder-Tinkham-Klapwijk �BTK� formalism28 but extend
and generalize it to include the effects of the exchange en-
ergy �some references called it spin polarization� in the fer-
romagnet, the RSOC due to the lack of inversion symmetry,
and the existence of FWM. We find many interesting features
in the conductance spectrum, stemming from the interplay of
magnetism and the RSOC. Away from the gap edge, the
tunneling conductance is enhanced as the RSOC decreases,
while it is almost unchanged near the gap edge. This behav-
ior is completely different from that found in the N/NCSC
junction.25 The competition between the effects of the ex-
change energy and the RSOC on the AR leads to an en-
hanced subgap conductance, which can even result in a
maximum at zero energy under certain conditions. In addi-
tion, we also show the importance of properly accounting for
the FWM, namely, the conductance spectrum monotonically
increases with decreasing the FWM parameter in the whole
excitation-energy region, which is essentially different from
the behavior found in the FM/CSC junctions.11,12,29

The paper is organized as follows. In Sec. II, we define
the theoretical model and extend the BTK approach to obtain
the amplitudes for various scattering processes that occur in
the FM/NCSC junction. In Sec. III, the corresponding nu-
merical results for the tunneling conductance are presented
and discussed. Section IV contains a summary of our results.

II. FORMULATION OF THE MODEL

We consider the tunneling conductance of the FM/NCSC
junction as shown in Fig. 1. The FM is at x�0 and is de-
scribed by an effective single-particle Hamiltonian. The
NCSC is assumed to have purely singlet pairing and is de-
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scribed by a BCS-like Hamiltonian. The FM/NCSC interface
is at x=0, where there is interfacial scattering, which is mod-
eled by a potential U�r�=U0��x�, with U0 characterizing the
barrier strength. The band dispersions are isotropic and the
effective masses of quasiparticles are assumed to be the same
on both sides. According to Ref. 30, the effect of the mass
difference is equivalent to that caused by a variation in the
interface potential strength. The quasiparticle wave function
satisfies the following Bogoliubov–de Gennes �BdG� equa-
tion:

H��r� = E��r� , �1�

where

H = �Ĥ�r� − �h�r� �̂�r�

�̂†�r� − �ĤT�r� + �h�r��
� , �2�

with the single-particle Hamiltonian

Ĥ�r� = �−
�2

2m
+ U�r� − EFi��̂0 + ��k,r��̂ .

Here EFi=EFM,EFS represent the Fermi energies in the FM
and the NCSC regions, respectively, �= �1 for different
spin orientations, h�r�=h0	�−x� is the exchange energy on
the FM side �we assume that the FM magnetization and the
exchange energy are along the z axis�, ��k ,r�=��k�	�x� is
the antisymmetric �Rashba� spin-orbit coupling on the SC
side, and �̂ are the Pauli matrices �we use the units in which

=1�. We discuss only the clean case with specular scatter-
ing at the interface. Taking disorder into account, both in the
bulk and at the interface, is beyond the scope of the BTK
formalism.

In our model, we consider a noncentrosymmetric super-
conductor with the tetragonal crystal symmetry, which is rel-
evant for CePt3Si, CeRhSi3, and CeIrSi3. We choose the
RSOC in the following form: ��k�=�0�ky ,−kx ,0� with the
Rashba coupling constant �0 and the BCS pairing potential

�̂�r�= i�̂y�0	�x�. We take into account the fact that the Fermi
energy is different in the FM and NCSC regions, which al-

lows for different bandwidths originating from different car-
rier densities in the two regions. We introduce the dimen-
sionless FWM parameter as follows: R=kFS /kFM
��EFS /EFM. In Sec. III we will show that the FWM between
the two regions plays an important role in the tunneling con-
ductance.

We focus on the excitations with E�0, assuming an in-
cident electron above the Fermi level. When an electron is
injected from the FM side, with spin �= ↑ ,↓, the excitation
energy E, and the wave vector k�

e , at an angle 	 from the
interface normal, there are four reflection processes: �i� An-
dreev reflection to the majority spin �rh

↑�, �ii� Andreev reflec-
tion to the minority spin �rh

↓�, �iii� normal reflection to the
majority spin �re

↑�, and �iv� normal reflection to the minority
spin �re

↓� �see Fig. 1�. The Andreev and normal-reflection
coefficients are denoted by rh

� and re
�, respectively. Solving

the BdG equation, the wave function is ��r�=��x�eik	r	,
where r	 is parallel to the interface, and

�FM�x� =

s

0

0

0
�eik↑

e cos 	x +

0

s̄

0

0
�eik↓

e cos 	x + re
↑


1

0

0

0
�e−ik↑

eAx

+ re
↓


0

1

0

0
�e−ik↓

eĀx + rh
↑


0

0

1

0
�eik↑

h cos 	↑
hx

+ rh
↓


0

0

0

1
�eik↓

h cos 	↓
hx �3�

on the FM side. The notations are as follows: the quasipar-
ticle wave vectors are given by

k↑
e�h� = �2m�EFM + �− �E + h0� ,

k↓
e�h� = �2m�EFM + �− �E − h0� .

An incoming electron with spin ↑ is described by s=1, s̄=0,
while a spin ↓ electron is described by s=0, s̄=1. Then, A

=s cos 	+ s̄ cos 	↑
e and Ā= s̄ cos 	+s cos 	↓

e and 	�
e�h� are

angles between the wave vectors k�
e�h� and the interface nor-

mal.
Similarly, the BdG wave function on the superconducting

side is given by

FIG. 1. �Color online� Schematic illustration of the scattering
processes at the FM/NCSC interface. The angles of normal and
Andreev reflections for electrons and holes with �= ↑ ,↓ are differ-
ent. Due to the presence of spin-orbit coupling, the electronlike and
holelike excitations on the superconducting side are scattered
through different angles.
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�SC�x� =
te
↑

�2

u

− iei	1
e
u

iei	1
e
v

v
�eik1

e cos 	1
ex +

te
↓

�2

u

iei	2
e
u

− iei	2
e
v

v
�eik2

e cos 	2
ex

+
th
↑

�2

v

ie−i	1
h
v

− ie−i	1
h
u

u
�e−ik1

h cos 	1
hx

+
th
↓

�2

v

− ie−i	2
h
v

ie−i	2
h
u

u
�e−ik2

h cos 	2
hx, �4�

with the wave vectors

k1
e�h� = − m�0 + ��m�0�2 + 2m�EFS + �− ��� ,

k2
e�h� = m�0 + ��m�0�2 + 2m�EFS + �− ���

and �=�E2−�0
2. The transmission amplitudes of electron-

like and holelike quasiparticles are te
� and th

�, respectively.
The quasiparticle amplitudes in the NCSC region are given
as

u =
1
�2
�1 +

�

E
, v =

1
�2
�1 −

�

E
. �5�

Finally, 	1�2�
e�h� are the angles between the wave vectors k1�2�

e�h�

and the interface normal, as shown in Fig. 1. The angles are
obtained from the following equations:

�sk↑
e + s̄k↓

e�sin 	 = sk↓
e sin 	↓

e + s̄k↑
e sin 	↑

e = k�
h sin 	�

h

= k1�2�
e�h� sin 	1�2�

e�h� , �6�

which express the conservation of the parallel component of
the wave vector due to the translational symmetry along the
interface.

All the coefficients in Eqs. �3� and �4� can be determined
by the following boundary conditions for the wave functions:

�FM�x=0− = �SC�x=0+, �7�

v̂x�SC�x=0+ − v̂x�FM�x=0− = − 2iU0�FM�x=0−, �8�

where  is the 4�4 matrix

 =

1 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 − 1
� �9�

and the velocity operator in the x direction is defined as31

v̂x =

−

i

m

�

�x
i�0	�x� 0 0

− i�0	�x� −
i

m

�

�x
0 0

0 0
i

m

�

�x
− i�0	�x�

0 0 i�0	�x�
i

m

�

�x

� . �10�

Note that the presence of the spin-orbit coupling results in
the off-diagonal components of the velocity operator. We
also introduce the dimensionless parameters Z=2mU0 /kFS
and �=2m�0 /kFS, characterizing the barrier strength and the
magnitude of the RSOC, respectively.

By using the general BTK formalism,28 we obtain for the
dimensionless differential tunneling conductance,

G�E� = 
�

P�G��E� ,

G��E� =
1

GN
�

	c

d	 cos 	G��E,	� ,

GN = �
	c

d	 cos 	
4 cos2 	

4 cos2 	 + Z2 , �11�

where P�= 1
2 �1+�h0 /EFM� is the probability that an incident

electron has spin � �P↑� P↓ because of the difference be-
tween the densities of states in the spin-↑ and spin-↓ bands
�see Ref. 7��, GN is the tunneling conductance for a normal-
metal/normal-metal junction, and 	c is determined by the
angle of total reflection �critical angle� for incident electron
with spin �. For an incoming electron with spin ↑, the criti-
cal angles for the Andreev reflection and the transmission are
given by 	c1=arcsin�k↓

h /k↑
e� and 	c2=arcsin�k1

e�h� /k↑
e�, respec-

tively. When 	 exceeds 	c1, the x component of the wave
vector in the AR process, ��k↓

h�2− �k↑
e�2 sin2 	, becomes

purely imaginary so that the Andreev-reflected quasiparticles
do not contribute to the charge current. Further, when 	
�	c2, the transmitted quasiparticles with the wave vectors
k1

e�h� do not contribute to the conductance.
The conductance for an electron with spin � as a function

of the excitation energy E and the incident angle 	 reads

G��E,	� = 1 +
�1

�0
�rh

↑�2 +
�2

�0
�rh

↓�2 −
�3

�0
�re

↑�2 −
�4

�0
�re

↓�2.

�12�

The ratios of �i on the right-hand side of this equation are
obtained from the conservation of probability,

�0 = �sk↑
e + s̄k↓

e�cos 	, �1 = k↑
h cos 	↑

h,

�2 = k↓
h cos 	↓

h, �3 = k↑
eA, �4 = k↓

eĀ .
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III. RESULTS AND DISCUSSION

In this section, we present the results of numerical calcu-
lations for the conductance of the FM/NCSC junction at zero
temperature, plotted as a function of the dimensionless qua-
siparticle energy E /�0. We will study the effects on the tun-
neling conductance of three dimensionless parameters: the
Rashba spin-orbit coupling �, the exchange energy I0
=h0 /EFM, and the Fermi wave-vector mismatch R. In our
calculation, we choose �0 /EFS=0.01 and consider two cases:
Z=0, which corresponds to a negligible potential barrier at
the interface, and also Z=1, corresponding to a high-
transparency interface, which is often realized in the scan-
ning tunneling microscopy experiments.

We consider first the case in which there is no Fermi-
surface mismatch, i.e., EFM=EFS and R=1. Figure 2 displays
the behavior of the tunneling conductance G�E� at a fixed
small exchange-energy value of I0=0.1 for several values of
�. In the absence of the interface barrier �Z=0�, the results
are shown in the top panel. One can see clearly that the
curves there are similar to the well-known BTK results.28 In
the BTK model, the conductance in the subgap region, 0
�E��0, for the materials with I0=�=0 is equal to 2 due to
the Andreev reflection. One can see that our curves in the top
panel indeed approach this value �and are all close to 2 at the
gap edge, i.e., at E=�0�. That the subgap conductance is
slightly smaller than 2 can be attributed to the suppression of
the Andreev reflection due to the different densities of states
in the spin-up and spin-down bands. The conductance at zero
energy and also far away from the gap edge monotonically
decreases with increasing the RSOC in the NCSC. This can

be understood as follows: as � increases, the transmitted
waves with the wave vectors k1

e�h� quickly become evanes-
cent since the angle of total reflection 	c2 for the waves with
k1

e�h� decreases as � increases. The eigenstates corresponding
to such waves can no longer contribute to the conductance.
In the bottom panel of Fig. 2, Z=1, the conductance curves
display similar behavior but with a stronger suppression of
G�E� in the subgap region and a higher and sharper maxi-
mum at the gap edge E=�0.

We next consider the effect of the exchange energy on the
tunneling conductance in the same situation as in Fig. 2, i.e.,
for R=1. In Fig. 3, the variation in G�E� with E /�0 is plotted
for several values of I0. In a FM/CSC junction, the conduc-
tance monotonically decreases with increasing I0 �Refs. 7
and 8� because of the reduction in the Andreev reflection
when only a small fraction of injected electrons from the
majority-spin band can be reflected as holes belonging to the
minority-spin band. However, if the superconductor has no
inversion symmetry, the Fermi surface is split into two due to

FIG. 2. The conductance G�E� versus the dimensionless energy
E /�0 for I0=0.1, R=1, and different values of the RSOC: �=0.05,
0.1, 0.2, 0.3, and 0.4. Z=0 �top panel� and Z=1 �bottom panel�.

FIG. 3. The conductance G�E� versus the dimensionless energy
E /�0 for R=1 and different values of the exchange energy: I0

=0.1, 0.2, 0.3, 0.4, and 0.6. �=0.2, Z=0 �top panel�, �=0.05, Z
=0 �middle panel�, and �=0.05, Z=1 �bottom panel�.
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the spin-orbit coupling, thus making the conductance fea-
tures more interesting. As seen clearly from the top ��
=0.2� and middle ��=0.05� panels in Fig. 3, in the presence
of the RSOC, the exchange energy can enhance the Andreev
reflection and therefore the subgap conductance in the region
0�E�E�, where E���0 /2. This effect becomes more pro-
nounced at �=0.05, in which case the subgap conductance at
E=0 is monotonically enhanced for all values of I0. The
conductance can even have a maximum at E=0 at certain
values of I0 and �. These features are quite different from
those observed in the FM/CSC junction where the peak
stems from the interplay of the FWM and the exchange
field.11,12,29 When the interfacial scattering is nonzero, as
shown in the bottom panel of Fig. 3, a rather sharp conduc-
tance peak appears at the gap edge. It becomes increasingly
narrow as I0 grows due to the suppression of the Andreev
reflection. Furthermore, the exchange-energy dependence be-
comes weak in the region E��0 and the conductance ap-
proaches its normal-state value G�E�=1 �Ref. 28� at higher
excitation energies.

We now turn to the effects of the Fermi wave-vector mis-
match, namely, R�1, on the tunneling conductance. The dif-
ference in the Fermi energies in the FM and NCSC regions
results in some interesting features in the conductance spec-
trum. In Fig. 4, which shows the results at �=0.1, I0=0.2,
Z=0 �top panel�, and Z=1 �bottom panel�, we consider the
evolution of the conductance curves for several values of the
FWM. One can easily see that the conductance is monotoni-
cally enhanced in the whole region of excitation energies as

the FWM parameter R decreases �i.e., the difference between
EFM and EFS increases�, which is significantly different from
the case of a FM/CSC junction.11,12,29 This result can be ex-
plained by the fact that in the presence of the RSOC, a
smaller R will lead to the weaker ordinary scattering at the
interface, which increases the Andreev reflection. We would
like to point out that in the absence of the RSOC, one cannot
obtain the monotonic increase in the conductance at all ex-
citation energies by varying R and/or I0. At energies much
higher than the gap edge, G�E� approaches 1, i.e., its normal-
state value.

IV. SUMMARY

To summarize our results, we have investigated the tun-
neling conductance of the FM/NCSC junction with the help
of the extended BTK formalism. Our results show a number
of features in G�E� that are qualitatively different from the
previously studied cases of N/NCSC and FM/CSC junctions.
These are caused by the interplay between the Rashba spin-
orbit coupling in the noncentrosymmetric superconductor,
the exchange energy in the ferromagnet, and the Fermi wave-
vector mismatch between the two regions.

If the Fermi energies in FM and NCSC regions are the
same, then far from the gap edge the conductance is mono-
tonically enhanced by introducing a small RSOC, while
around the gap edge the conductance is almost independent
of RSOC. In addition, the subgap conductance can be en-
hanced due to the interplay of the RSOC and the exchange
energy and can have a maximum at E=0 at certain values of
� and I0. The enhancement of the conductance is more pro-
nounced at smaller �, which is attributed to the increase in
the Andreev reflection by the small RSOC dominating the
decrease due to the exchange energy. These phenomena are
essentially different from those found in FM/CSC junctions,
where both the enhanced subgap conductance and its maxi-
mum arise from the effect of the FWM at a fixed exchange
energy.

We also considered the case of different Fermi energies in
the FM and NCSC regions. The tunneling conductance is
quite sensitive to the FWM and displays a monotonic in-
crease as the difference between the Fermi energies increases
due to the suppressed ordinary scattering at the interface and
enhanced Andreev reflection. This behavior is also essen-
tially different from that in FM/CSC junctions.

As for the experimental situation, while we are not aware
of any work done on FM/NCSC junctions, FM/CSC junc-
tions have been studied in Refs. 4–6. In those works, the spin
polarization of the current in the ferromagnet �the transport
spin polarization� was determined by analyzing the experi-
mental data within the extended BTK scheme, with the total
current decomposed into unpolarized and fully polarized
components. Our model, which includes the RSOC, can also
be used in the context of spin-polarized tunneling spectros-
copy.
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FIG. 4. The conductance G�E� versus the dimensionless energy
E /�0 for �=0.1, I0=0.2, and different values of the Fermi wave-
vector mismatch parameter: R=1, 0.98, 0.95, and 0.90. Z=0 �top
panel� and Z=1 �bottom panel�.

TUNNELING CONDUCTANCE OF… PHYSICAL REVIEW B 80, 014516 �2009�

014516-5



1 C. R. Hu, Phys. Rev. Lett. 72, 1526 �1994�.
2 S. Kashiwaya, Y. Tanaka, M. Koyanagi, and K. Kajimura, Phys.

Rev. B 53, 2667 �1996�.
3 J. W. Ekin, Y. Xu, S. Mao, T. Venkatesan, D. W. Face, M. Eddy,

and S. A. Wolf, Phys. Rev. B 56, 13746 �1997�.
4 S. K. Upadhyay, A. Palanisami, R. N. Louie, and R. A. Buhr-

man, Phys. Rev. Lett. 81, 3247 �1998�.
5 R. J. Soulen, Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T.

Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak,
J. S. Moodera, A. Barry, and J. M. D. Coey, Science 282, 85
�1998�.

6 P. Raychaudhuri, A. P. Mackenzie, J. W. Reiner, and M. R. Bea-
sley, Phys. Rev. B 67, 020411�R� �2003�.

7 M. J. M. de Jong and C. W. J. Beenakker, Phys. Rev. Lett. 74,
1657 �1995�.

8 J.-X. Zhu, B. Friedman, and C. S. Ting, Phys. Rev. B 59, 9558
�1999�.

9 T. Hirai, Y. Tanaka, N. Yoshida, Y. Asano, J. Inoue, and S. Kashi-
waya, Phys. Rev. B 67, 174501 �2003�.

10 J. Linder and A. Sudbø, Phys. Rev. B 75, 134509 �2007�.
11 I. Žutić and O. T. Valls, Phys. Rev. B 60, 6320 �1999�.
12 I. Žutić and O. T. Valls, Phys. Rev. B 61, 1555 �2000�.
13 G. Sun, D. Y. Xing, J. M. Dong, and M. Liu, Phys. Rev. B 65,

174508 �2002�.
14 Y. C. Tao and J. G. Hu, J. Appl. Phys. 104, 063903 �2008�.
15 Z.-Y. Zhang, Eur. Phys. J. B 63, 65 �2008�.

16 E. Bauer, G. Hilscher, H. Michor, Ch. Paul, E. W. Scheidt, A.
Gribanov, Yu. Seropegin, H. Noël, M. Sigrist, and P. Rogl, Phys.
Rev. Lett. 92, 027003 �2004�.

17 L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004
�2001�.

18 S. K. Yip, Phys. Rev. B 65, 144508 �2002�.
19 K. V. Samokhin, Phys. Rev. Lett. 94, 027004 �2005�; Phys. Rev.

B 76, 094516 �2007�.
20 V. M. Edelstein, Phys. Rev. Lett. 75, 2004 �1995�.
21 S. Fujimoto, Phys. Rev. B 72, 024515 �2005�.
22 D. F. Agterberg, Physica C 387, 13 �2003�.
23 K. V. Samokhin, Phys. Rev. B 70, 104521 �2004�.
24 R. P. Kaur, D. F. Agterberg, and M. Sigrist, Phys. Rev. Lett. 94,

137002 �2005�.
25 T. Yokoyama, Y. Tanaka, and J. Inoue, Phys. Rev. B 72,

220504�R� �2005�.
26 C. Iniotakis, N. Hayashi, Y. Sawa, T. Yokoyama, U. May, Y.

Tanaka, and M. Sigrist, Phys. Rev. B 76, 012501 �2007�.
27 J. Linder and A. Sudbø, Phys. Rev. B 76, 054511 �2007�.
28 G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B

25, 4515 �1982�.
29 P. H. Barsic and O. T. Valls, Phys. Rev. B 79, 014502 �2009�.
30 T. Yokoyama, Y. Tanaka, and J. Inoue, Phys. Rev. B 74, 035318

�2006�.
31 L. W. Molenkamp, G. Schmidt, and G. E. W. Bauer, Phys. Rev.

B 64, 121202�R� �2001�.

S. WU AND K. V. SAMOKHIN PHYSICAL REVIEW B 80, 014516 �2009�

014516-6


